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Optimal aerodynamic shape design aims to find the minimum of a functional that describes an aerodynamic

property, by controlling the partial differential equation modeling the dynamics of the flow that surrounds an

aircraft, by using surface deformation techniques. As a solution to the enormous computational resources required

for classical shape optimization of functionals of aerodynamic interest, probably the best strategy is to applymethods

inspired in control theory. One of the key ingredients relies on the usage of the adjoint methodology to simplify the

computation of gradients. In this paper we restrict our attention to optimal shape design in two-dimensional systems

governed by the steady Euler equations for flows whose steady-state solutions present discontinuities in the flow

variables (an isolated shock wave). We first review some facts on control theory applied to optimal shape design and

recall the 2-D Euler equations (including the Rankine–Hugoniot conditions).We then study the adjoint formulation,

providing a detailed exposition of how the derivatives of functionals of aeronautical interest may be obtained when a

discontinuity appears. Further on, adjoint equations will be discretized and analyzed and some novel numerical

experiments with adjoint Rankine–Hugoniot relations will be shown. Finally, we expose some conclusions about the

viability of a rigorous approach to the continuous Euler adjoint system with discontinuities in the flow variables.

Nomenclature

A = Jacobian matrix for the convective fluxes
CD = drag coefficient
CL = lift coefficient
Cp = pressure coefficient
c = local speed of sound
E = total energy
F = vector of convective fluxes
f = vector of numerical fluxes
H = enthalpy
J = cost function
n = normal vector
P = static pressure
S = solid wall boundary
Sad = space of admissible surfaces
s = speed of shock wave propagation
t = unit tangent vector
U = vector of conserved variables
v = velocity vector
W = vector of characteristic variables

x = Cartesian coordinates vector
xb = intersection between a shock wave and a solid surface
� = angle of attack
�1 = “far-field” boundary
� = ratio of specific heat
� = first difference
� = first variation
@ = partial derivative
@n = normal derivative to a curve
@tg = tangent derivative to a curve
� = curve parameter
� = curvature of a curve
� = diagonal matrix of inviscid eigenvalues
� = density
� = shock wave curve
� = vector of adjoint variables
� = fluid domain

I. Introduction

I N THE last decades, optimal shape design in aeronautics has
evolved very close to the computational fluid dynamics

developments. By the 1980s, advances in computer hardware and
algorithmsmade it feasible to develop accurate and efficient analysis
tools for inviscid flows [1]. On the other hand, control theory was
significantly developed with, in particular, the groundbreaking
works due to Lions [2]. Several years later, Pironneau investigated
the problem of optimum shape design for elliptic equations using
control theory [3]. In the late 1980s, Jameson [4]was thefirst to apply
these techniques to the Euler and Navier–Stokes equations in the
field of aeronautical applications. At the beginning of the twenty-first
century, new techniques such as the reduced gradient formulation [5]
and the systematic approach [6] made a significant simplification to
the continuous adjoint implementation on unstructured meshes.
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The goal of optimal shape design is to minimize a suitable cost or
objective function (drag coefficient, deviation from a prescribed
surface pressure distribution, etc.) with respect to a set of design
variables (defining, for example, an airfoil profile or aircraft surface).
Widely used methods are based on gradient descent techniques,
where minimization is achieved by means of an iterative process,
which requires the computation of the gradients or sensitivity
derivatives of the cost function with respect to the design variables.

If the flow is assumed to be smooth, the perturbation of the
flowfield variables with respect to shape changes can be calculated
by linearizing the governing equations (or using a more elaborate
technique such as the adjoint state). However, this is not valid in the
neighborhood of flow discontinuities. Several options have been
proposed in the literature to deal with nonsmooth flows, in particular,
by Iollo et al. [7], Giles and Pierce [8], Matsuzawa and Hafez [9],
Cliff et al. [10], and Castro et al. [11]. Currently, most existing works
ignore the shock motion sensitivity supposing that shocks are
smeared using numerical dissipation. However, this paper is
intended to clarify that appropriate treatment of shock waves is
important in some situations and leads to the computation of more
accurate gradients that lead to faster optimization loops.

Aerodynamic applications of optimal shape design [12] in systems
governed by partial differential equations are formulated on a fluid
domain�, containing a compressible fluid, usually air, delimited by
disconnected boundaries divided into a “far field” �1 and one or
more solid wall boundaries S, usually airplane surfaces (see Fig. 1).

From now on we will restrict ourselves to the analysis of
optimization problems involving functionals J defined on the solid
wall S, whose value depends on the flow variables U obtained from
the solution of the fluid flow equations. In this context, the generic
optimization problem can be succinctly stated as follows: find Smin 2
Sad such that

J�Smin� � min
S2Sad

J�S� (1)

where Sad is the set of admissible boundary geometries and

J�S� �
Z
S

j�P;nS� ds (2)

is the objective function, where j�P;nS� is a smooth function which
depends on nS (inward-pointing unit vector normal to S) and the
pressureP. The evaluation of J�S� requires the resolution of the flow
equations to obtain P.

It is worth mentioning that only functionals which depend on the
pressure P alone are allowed a priori [6,13]. Luckily, functionals
which depend solely on the pressure are the most common in
aerodynamic design applications with Euler equations (e.g., lift or
drag coefficients).

Let us consider a small perturbation of the boundary S which,
without loss of generality, can be parameterized by a deformation of
size �S along nS. The deformed surface can be written as

S0 � fx� �S�x�nS�x�;x 2 Sg (3)

Assuming a regular flow solution, the variation of the functional J
under the deformation can be evaluated as [11,14]

�J�S� �
Z
S

�
@j

@P
@nP� t � @tg

�
@j

@nS

�
� �

�
j� @j

@nS
nS

��
�S ds

�
Z
S

@j

@P
�P ds (4)

where � is the curvature¶ of S, and �P stands for the infinitesimal
variation of the pressure. The first term on the right-hand side (RHS)
of Eq. (4) stems from the displacement of the boundary and the last
term is the contribution due to infinitesimal changes in the flow
solution induced by the deformation.

On the other hand, nonregular solutions of the flow variables are
the most common case in aeronautical applications and appear in
transonic and supersonic flow regimes. Transonic inviscid flows are
characterized by the appearance of shock waves that extend from the
flowfield to the surface of the body. In these cases a discontinuity
(shockwave) along a regular curve�must be considered (see Fig. 2)
and the Rankine–Hugoniot relations must be added to the Euler
equations to correctly account for the presence of the shock.

If the flow presents a discontinuity that touches the surface S then
the previous computation of the derivative of the functional in Eq. (4)
fails and has to bemodified to include the effect due to the sensitivity
of the shock location with respect to shape deformations [15].

Let xb �� \ S that we assume to be a unique point. Then the
expression for �J is

�J�S� �
Z
Snxb

�
@j

@P
@nP� t � @tg

�
@j

@nS

�
� �

�
j� @j

@nS
nS

��
�S ds

�
Z
Snxb

@j

@P
�P ds �

�j�xb
nS � t�

����xb� � �nS � n���S�xb��

� t �
�
@j

@nS

�
xb

�S�xb� (5)

where, to define n� � �n�x; n�y�, we first consider t� � �t�x; t�y�,
the unitary tangent vector to the discontinuity beginning at the solid
surface and pointing to the far-field boundary, and then set n� �
�n�x; n�y� as the�=2 counterclockwise rotation of t�, and �z�x stands
for the jump of the quantity z at the point x.

In Eq. (5) a smooth infinitesimal deformation of the discontinuity
� is assumed and its normal displacement has been denoted by ��.
This displacement determines another smooth curve �0 which
represents, to first order, the new location of the shock

�0 � fx� ���x�n��x�;x 2 �g (6)

It is interesting to observe that the fifth and sixth terms in Eq. (5)
are divided bynS � t�, which becomes largerwhen the angle between
� and S at x� xb is small. Thus, the part of the gradient coming from
the shockwave displacement is likely to bemore relevant in this case.

The most expensive computations in Eq. (5) (in terms of time and
required computational resources) are those which involve the
evaluation of �P and ��. In principle, these can be obtained by
solving the linearized flow equations (together with the linearized

Fig. 1 Classical optimal design problem.

Fig. 2 Optimal design problem with a shock wave �.

¶For a plane curve given parametrically as f��� � �x���; y����, the
curvature is defined as �� j� _x �y� _y �x�=� _x2 � _y2�3=2j, where the dots denote
differentiation with respect to �.
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Rankine–Hugoniot conditions) once per each independent
deformation (design variable). But, if the design space is large, as
is the case in real applications, the computational cost of such a
computation is prohibitive. It is then convenient to switch to the
control theory approach, which reduces significantly the computa-
tional cost of getting the gradients, using the adjoint or dual
formulation of the shape design problem.

II. 2-D Euler Equations and
Rankine–Hugoniot Relations

Ideal fluids are governed by the Euler equations [16,17], which
express the conservation of mass, momentum (with null viscosity),
and energy. In the aeronautical framework, these equations are
considered in a domain � delimited by disconnected boundaries
divided into far field �1 and solid wall boundaries S. The most
common way to pose the Euler equations is in conservative form:

@tU� r � F� 0; in � (7)

where U� ��; �vx; �vy; �E�T are the conservative variables and
F� �Fx; Fy� is the convective flux vector

Fx �

�vx
�v2x � P
�vxvy
�vxH

0
BB@

1
CCA; Fy �

�vy
�vxvy
�v2y � P
�vyH

0
BB@

1
CCA (8)

where � is the fluid density, v� �vx; vy� is the flow velocity in a
Cartesian system of reference, E is the total energy, P the system
pressure, and H the enthalpy. The system of Eq. (7) must be
completed by an equation of state which defines the thermodynamic
properties of the fluid. For a perfect gas,

P� �� � 1���E � 1
2
jvj2� (9)

where � 	 1:4 for standard air conditions, and the identity �H�
�E� P holds.

On the other hand, the Euler equation (7) has to be completed with
the following boundary conditions:

v � nS � 0; on S (10)

wherenS is an inward-pointing unit vector normal toS, and at the far-
field boundary �1 boundary conditions are specified for incoming
waves, whereas outgoing waves are determined by the solution
inside the fluid domain [18].

Inviscid flows described by the Euler equations can develop
discontinuities (shocks or contact discontinuities) due to the
intersection of flow characteristics. When this occurs, the Rankine–
Hugoniot conditions relate the flow variables on both sides of the
discontinuity. For a shock located at�, which propagates with speed
s, these relations are

�F � n��� � s�U�� � 0 (11)

where n� � �n�x; n�y� is the unit vector normal to the curve �
pointing in the same direction as the shock speed s, and �A��
represents the jump of A across the discontinuity curve �, that is to
say, �A�� � A� � A�. For the Euler equations, the Rankine–
Hugoniot relations can be written as

8>>>>><
>>>>>:

��v � n��� � s���� � 0

���v � n��vx � Pn�x�� � s��vx�� � 0

���v � n��vy � Pn�y�� � s��vy�� � 0

�H�v � n��� � s��E�� � 0

(12)

If a steady problem is considered, the discontinuity velocity
vanishes and then Eq. (12) is simplified to

8>>>>><
>>>>>:

��v � n��� � 0

�vx���v � n� � �P��n�x � 0

�vy���v � n� � �P��n�y � 0

�H�� � 0

(13)

In this case, along the discontinuity, the following holds [19]:

���� ≠ 0; �P�� ≠ 0; �v � n��� ≠ 0; �v � t���� 0 (14)

III. Continuous Adjoint Formulation for the Steady
Euler Equations

When developing an adjoint method to address optimal design
problems in aeronautics, one of the main mathematical difficulties is
the presence of discontinuities (shock waves) [8,9,20–22]. This is
due, in particular, to the intrinsic complexity of the adjoint system in
the presence of shocks. Indeed, in the presence of shock
discontinuities, the formal linearization of the state equations, which
can be rigorously justified for smooth solutions, fails to be true and
the adjoint system changes its nature. Indeed, when this occurs, the
state of the system needs to be rather understood as a multibody one
in which both the state itself at both sides of the shock and the
geometric location of the shock are considered as part of the state.

Thus, the sensitivity of the model needs to take into account both
that of perturbations of the solution and that of the location of the
shock. The linearized flow equations turn out to be the classical ones
on both sides of the shock. But an additional linear transport equation
along the shock emerges, which stems from the linearization of the
Rankine–Hugoniot conditions. This allows defining the adjoint
solution in a unique way.

A. Analytical Formulation of the Continuous Adjoint Method

The adjoint formulation is applied to an optimization problem
defined in Eq. (1), and the objective is to evaluate the variation of the
functional (2) under shape changes of the surface S, where the flow
governing equations are the steady Euler equations,

r � F� 0; in � (15)

Assuming a flow discontinuity located along a smooth curve �
that meets the boundary S at a point x� xb and is parameterized, as
mentioned above, in such a way that it begins in xb, the variation of
the functional �J is given by Eq. (5). �U stands for the infinitesimal
deformation of the state to both sides of the discontinuity line and
solves the linearized Euler equations, while �� describes the
infinitesimal normal deformation of the discontinuity and it solves a
linearization of the Rankine–Hugoniot conditions8>>>>><
>>>>>:

r � �A�U� � 0; in � n�
�v � nS ���S@nv � nS � �@tg�S�v � tS; on S n xb
��W�� � 0; on �1

�A���@nU� �U��� � n� � �F�� � �n� � 0; on �

(16)

with ��W�� representing the incoming characteristics on the far-field
boundary which correspond to physical boundary conditions in the
Euler problem. @F=@U �A is the Jacobian matrix, @n � n � r and
@tg � t � r are the normal and tangential derivatives, respectively.

Note that system (16) must be solved in two steps: first we find the
flow variation �U to both sides of the shock by solving the linearized
Euler equations together with the boundary conditions on S and �1.
Once �U is known, we use the last equation in Eq. (16) to obtain the
displacement of the shock ��.

In this case, �S, which describes infinitesimal deformations along
the normal direction (3), is an input datum to the design problem. In
practice, �S has to be directly realized by means of the admissible
design variables thusmaking impossible arbitrary deformations [23].
Therefore, once the continuous analysis has been developed,
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allowing arbitrary deformations, a careful numerical interpretation is
required to transfer those results to the context of the admissible
design variables.

To eliminate �P and �� from Eq. (5), the adjoint problem is
introduced through the Lagrange multipliers ��T ;LT� � � 1;  2;
 3;  4; l1; l2; l3; l4�. Generally speaking, the method of Lagrange
multipliers facilitates the calculation of the reduced gradient of the
multivariate function, the constraints being in this case the linearized
Euler equations and Rankine–Hugoniot conditions in Eq. (16). We
assume that ��T ;LT� satisfies the following adjoint system:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

�AT � r�� 0; in � n�
’ � nS � @j

@U
; on S n xb

�T�A � n�1�� � 0; on �1

��T �� � 0; on �

@tg�
T �F � t�� � 0; on �

�T�xb��F � t��xb �
�j�xb
nS �t�

; at xb

L��j�; on �

(17)

where�T�A � n�1�� � 0 represents the adjoint boundary conditions
for the far field that we describe in more detail later.

The first step of the procedure amounts to multiplying the
linearized Euler equations and Rankine–Hugoniot conditions in
Eq. (16) by� and L, respectively. Then, integrating over the part of
the domain where the functions are smooth we obtain the following:

0�
Z
�n�

�Tr � �A�U� d�

�
Z
�

LT��A���@nU� �U��� � n� � �F�� � �n�� ds (18)

After integration by parts in the first term of the right-hand side of
Eq. (18) and taking into account the first, fourth, and last equations in
Eq. (17) we easily obtain

0�
Z
Snxb

�TA�U � nS ds�
Z
�1

�TA�U � n�1 ds

�
Z
�

�T �A@nU�� � n���ds�
Z
�

�T �F�� � �n� ds (19)

Let us now analyze separately each of the terms of the RHS of
Eq. (19) as follows:

1) The first term of Eq. (19) is an integral over the solid surface S.
Substituting the Jacobian matrix by its value and taking into account
the second equation in Eq. (17) the integral becomes [6]Z

Snxb
�TA�U � nS ds�

Z
Snxb
��v � nS�# ds�

Z
Snxb
�’ � nS��P ds

��
Z
Snxb
��@nv � nS�#� @tg��v � tS�#���S ds�

Z
Snxb

@j

@P
�P ds

(20)

where ’� � 2;  3� and #� � 1 � �vS � ’� �H 4. Note that the
last term on the RHS of Eq. (20) is precisely one of the terms that we
want to eliminate in Eq. (5).

2) The second term of Eq. (19) is an integral over the far-field
surface �1 which vanishes due to the third equation in Eq. (17). In
fact, the adjoint boundary conditions are obtained by imposing

�T ~A�U� 0; on �1 (21)

where ~A�A � n�1 . Let us analyze these linearized equations in

more detail. The matrix ~A can be diagonalized as ~A� R�R�1, and
we can write Eq. (21) as

�TR�R�1�U� 0 (22)

or, in terms of characteristic variables, �W � R�1�U:

�TR��W � 0 (23)

Let us decompose the matrix � into its positive and negative parts
���� ���, where Dirichlet boundary conditions have been
imposed for the characteristic variables corresponding to incoming

characteristics, or negative eigenvalues of ~A. Therefore we have

R���W � 0 (24)

This assertion is only valid if, as in our case, no variations on the far-
field boundary are allowed. Using Eq. (24), Eq. (23) reduces to

�TR���W � 0 (25)

where, if we define the characteristic adjoint variables as�� RT�,
then Eq. (25) is equivalent to ���� 0, that is, the characteristic
adjoint variables corresponding to positive eigenvalues have to be set
to zero. This condition is written in Eq. (17) as

�T�A � n�1�� � 0; on �1 (26)

A good reference about far-field adjoint boundary conditions can be
found in [24].

3) We now consider the last two terms on the RHS of Eq. (19),
which are integrals over the discontinuity curve � that touches the
solid surface at the point xb. For sufficiently small values of the
deformation �� it is easy to see that

�n� ��@tg����t�

Therefore, the last two terms in Eq. (19) read

Z
�

�T �A@nU�� � n���ds�
Z
�

�T �F�� � t�@tg��ds

�
Z
�

�T �@n�F � n������ds �
Z
�

�T �F�� � t�@tg��ds (27)

On the other hand, on�we can decompose the divergence operator
in the Euler equations into its tangential and normal components as
follows:

0� r � Fj� � @tg�F � t�� � ��F � n� � @n�F � n�� (28)

where �� is the curvature of�. This last identity holds to both sides
of the shock � and therefore we have

0� �@tg�F � t���� � ���F�� � n� � �@n�F � n����
� �@tg�F � t���� � �@n�F � n���� (29)

due to the Rankine–Hugoniot conditions.
From identity (29), the normal derivative in Eq. (27) can be

transformed into a tangential derivative and we can write the RHS of
Eq. (27) as

�
Z
�

�T �@tg�F � n������ds �
Z
�

�T �F�� � t�@tg��ds

��
Z
�

�T@tg����F � t���� ds

�
Z
�

@tg�
T �F � t�����ds��T�xb��F � t��xb ���xb�

�
Z
�

@tg�
T �F � t�����ds� �j�xb ���xb� (30)

where we have used the sixth equation in Eq. (17), for the last
identity.

Having analyzed the terms in Eq. (19), this identity can be
rewritten as
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Z
Snxb

@j

@P
�P ds � �j�xb���xb�

� �
Z
�

@tg 	�
T �F � t�����ds��T�xb��F � t��xb ���xb�

�
Z
Snxb
��@nv � nS�#� @tg��v � tS�#���S ds (31)

This equation will be used to eliminate the linearized variables
from the variation of the functional J defined in Eq. (5) upon
identifying the corresponding terms in Eqs. (5) and (31). Thus,
Eq. (5) can be written as

�J�S� �
Z
Snxb

�
@j

@P
@nP� t � @tg

�
@j

@nS

�
� �

�
j� @j

@nS
nS

��
�S ds

�
Z
Snxb
��@nv � nS�#� @tg��v � tS�#���S ds

� �j�P��xb
nS � n�

nS � t�
�S�xb� � t �

�
@j

@nS

�
xb

�S�xb� (32)

Using the expressions (17) and (32) we are able to solve any shape
design problem with the Euler equations. However, this strategy is
difficult to implement in practice because it needs to localize the
discontinuity curve� to impose the internal boundary conditions on
� for the adjoint variables, that is, the fourth and fifth equations in
Eq. (17). These two equations will be referred to in the sequel as
adjoint Rankine–Hugoniot conditions for �.

Two different methods are proposed for computing the functional
gradient using shock information.

1) Method 1: using adjoint Rankine–Hugoniot relations (shock
localization).

a) Step 1: Find the discontinuity curve � and impose adjoint
Rankine–Hugoniot relations over the discontinuity� to cancel the
dependence of the functional J with respect to ��.

b) Step 2: Solve Eq. (17) and evaluate Eq. (32) (or a simplified
expression).
2) Method 2: without using adjoint Rankine–Hugoniot relations.

a) Step 1: Ignore the sensitivity of the functional due to the
displacement of the discontinuity � set as if the flow was
continuous across �.

b) Step 2: Compute the functional gradient (32) without shock
considerations, that is, supposing that ��� 0. In this case, it is
important to note that we are not solving the real adjoint system
because the adjoint Rankine–Hugoniot equations are not
considered.

c) Step 3: Use the term @J=@� to find a correction for the
computed gradient (e.g., introducing design variables in which
their main effect is a shock displacement).

1. Method 1: Continuous Adjoint System Using Adjoint Rankine–

Hugoniot Relations

The direct application of Eqs. (17) and (32) in a real design
problem is complex because it is necessary to find the shock curve,
the value of the adjoint variables at both sides of the discontinuity,
and finally solve the complete adjoint system.

Another possibility consists of assuming normal shockwaves [25]
(perpendicular to the shock medium’s flow direction), and the
functional j as a linear function ofP. In this framework, Eqs. (17) and
(32) are simplified to obtain

�J�S� �
Z
Snxb

�
@j

@P
@nP� t � @tg

�
@j

@nS

�
� �

�
j� @j

@nS
nS

��
�S ds

�
Z
Snxb
��@nv � nS�#� @tg��v � tS�#���S ds (33)

with the following adjoint system:

8>>>>><
>>>>>:

�AT � r�� 0; in � n�
t� � @tg’� 0; on �

’ � nS � @j
@P
; on S

�T�A � n�1�� � 0; on �1

(34)

To solve the continuous adjoint equations (34) and evaluate
Eq. (33) is easier than to use Eq. (17) and evaluate Eq. (32). This is
because, in the first case it is not necessary to find the value of the
adjoint variables on both sides of the shock (which numerically is a
very complex task). The viability of this approach will be shown in
Sec. IV.

2. Method 2: Continuous Adjoint System Without Using Adjoint

Rankine–Hugoniot Relations

The variation of the functional J in Eq. (32) can be written as

�J�S� �
Z
Snxb

G�S ds�Gxb�S�xb�

�
Z
�

Gshock��ds�Gshock
xb

���xb� (35)

where G is the local gradient of J with respect to an infinitesimal
movement of S in a normal directionnS to the surface S, andG

shock is
the local gradient of Jwith respect to an infinitesimalmovement of�
in a normal direction n� to the discontinuity surface�. As before, xb
denotes the point inwhich the discontinuity touches the solid surface,

G� @j

@P
@nP� t � @tg

�
@j

@nS

�
� �

�
j� @j

@nS
nS

�

� �@nv � nS�#� @tg��v � tS�#� (36)

Gxb �
@j

@P
@nP� t � @tg

�
@j

@nS

�
� �

�
j� @j

@nS
nS

�
� �j�P��x

nS � n�

nS � t�
(37)

where in Gxb , the term �j�P��xb ��nS � n��=�nS � t���, which depends
on the angle between the shock wave and the solid surface, appears.
This term can be easily computed by using a finite difference strategy
with some selected design variables over the solid surface (with
influence over the shock), or by a direct evaluation. Notice that this
term is well evaluated when a discrete adjoint strategy or a finite
difference method is used.

On the other hand, terms which depend on the shock wave
displacement are computed as

Gshock � @tg 	�T �F � t��� (38)

Gshock
xb
��T �F � t��xb �

�j�P��xb
nS � t�

(39)

It is noteworthy that the shock displacement sensitivityGshock does
not appear in the discrete adjoint method because in that method the
shock position is not considered as a design variable and only
infinitesimal variations of the solid surface S shape are considered
[11].

It is important to remark that there is a very particular deformation
of the solid surface (which produces a shock movement) that could
imply an important variation of the cost function. Now efforts must
be focused in looking to develop a method that introduces this extra
information provided by Eq. (38), and there are at least two ways of
doing that.

1) Compute the functional gradient without shock considerations.
In a second stage, use the term @J=@� for finding a correction to the
computed gradient. For example, by an inverse design problem, find
the shape S which produces a shock deformation equivalent to
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	�T �F � t��� which is the greatest descent direction using the shock
displacement. Finally, use the shape S which produces a shock
deformation as a new surface design variable.

2) Pose the following inverse design problem: find the surface
variation that produces only an infinitesimal shock wave dis-
placement over the surface. As before, this shape function which
only moves the shock will be used in the optimization problem as a
new surface design variable.

B. Discretization of the Adjoint Equations

We have used a standard edge-based finite volume formulation on
the dual grid [26–28], obtained by applying the integral formulation
of the adjoint equations to a dual grid control volume�j surrounding
any given node j of the grid and performing an exact integration
around the outer boundary of this control volume. Using the
divergence theorem

j�jj
d�j

dt
�AT

j

Z
�j

�n dS� j�jj
d�j

dt
�
Xmj
k�1

fjk � njkSjk � 0 (40)

whereAT
j is the (transposed) Euler Jacobian evaluated at the node j,

�j is the boundary of�j, and j�jj its area. For every neighbor node k
of j,njk is the outward unit vector normal to the face of�j associated
with the grid edge connecting j and k and Sjk is its length, fjk is the
numerical flux vector at the said face,�j is the value of� at the node
j (it has been assumed that�j is equal to its volume average over�j),
and mj is the number of neighbors of the node j. The solution is
advanced in time using a multistage Runge–Kutta method. Next, we
review several alternative schemes for the computation of the
numerical flux vector.

1. Central Scheme with Artificial Dissipation

In the current work, we have developed a central scheme inspired
by the standard Jameson–Schmidt–Turkel scheme [29], following
the adaptation to unstructured flow solvers presented in [30]. In our
scheme, the numerical flux is computed as

fcentjk 
 fjk � njk � ATjk
�
�j ��k

2

�
� djk (41)

where ATjk 
 AT
j � njk is the projected Jacobian, and djk denotes the

artificial dissipation. A simplified, fourth order differences scheme
has been chosen for the artificial dissipation

djk � ��4�jk �r2�j � r2�k��jk	jk (42)

where r2 denotes the undivided Laplacian, ��4�jk are user-defined

constants, and 	jk is the local spectral radius. Finally �jk is
introduced to account for the stretching of the mesh cells.

2. Roe’s Upwind Scheme

In addition to the central scheme presented previously, an upwind
scheme based upon Roe’s flux difference splitting scheme [31,32]
has been developed for the adjoint equations.

In our case, the aim is to use an upwind-type formula to evaluate a
flow of the form AT � r�. Taking into account that
AT ���PT��1�PT , where AT �AT � n is the projected Jacobian
matrix, � is the (diagonal) matrix of eigenvalues and P is the
corresponding eigenvector matrix, the upwind flux is computed as

fupwjk � 1
2
�ATj ��j ��k� � �PT��1j�jPT��� (43)

where fupwjk ≠ fupwkj .

IV. Numerical Experiments

The aim of this section is to investigate, with some numerical
experiments, the significance of imposing the adjoint Rankine–
Hugoniot internal boundary conditions into the functional gradient
computation.

The proposed problem consists of minimizing the wave drag
using, as initial geometry, aNACA0012 airfoil. Gradients of the cost
function are obtained with respect to variations of 50 Hicks–Henne
sine “bump” functions [23], centered at various locations along the
upper surfaces of the baseline airfoil. The locations of these geometry
perturbations are ordered sequentially such that they start at the 25%
of the chord (upper surface) and proceed forward to the trailing edge
until the 75% of the chord (upper surface); see Fig. 3 for an example
of one-bump functions applied to a NACA 0012 airfoil.

The drag objective function CD, on the surface S, is defined as

JCD �
Z
S

P

0:5v21�1L
nS � d ds; d� �cos�; sin�� (44)

where nS is the inward unit vector normal to the boundary S, � is the
airfoil angle of attack, L is the characteristic length of the airfoil, and
v1, �1 are the freestream velocity and density, respectively.

Fig. 3 Geometrical visualization of a Hicks–Henne bump function (left) and the effect produced by this surface perturbation on the Mach distribution

(right).
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A. Symmetric Configuration

In this section, a redesign of an airfoil profile NACA 0012 in
transonic regime (Mach 0.8, �� 0:0 deg) has been selected as the
baseline numerical test. In Fig. 4 the iso-Mach lines (left) and CP
coefficient (right) of the initial configuration are shown. In this
configuration, the shock wave is orthogonal to the NACA 0012
surface and is located on a nearly flat zone (horizontal) of the airfoil
profile.

In accordance with the flow results exposed in Fig. 4, we can
expect, a priori, that the influence of a shock wave displacement on
theCD coefficient will be very small because the shock is located on a
nearly horizontal plate and the influence of its specific position in this
zone on the drag is negligible.

Next, the continuous adjoint formulation developed in this paper is
applied. Instead of using the complete adjoint relation over the shock,
a simplified version (34) is used. The crucial step of this method is to
develop an algorithm for detecting shock waves and subsequently
impose the correct adjoint Rankine–Hugoniot relations at the shock
location.

In Fig. 5 the adjoint variablefield (left) is shown (imposing and not
imposing the Rankine–Hugoniot relations). On the other hand, a
most relevant result is shown in the right part of Fig. 5. In this case the
sensitivity of the functional CD with respect to infinitesimal
variations in the shape of the NACA 0012 is presented (imposing or
not, adjoint Rankine–Hugoniot relations on the shock). Results in
both cases (with and without Rankine–Hugoniot relations) are
almost equal.

To sum up, in this example, internal conditions of Rankine–
Hugoniot relations are naturally imposed in the case where the
sensitivity of the functional with respect to variations in the position
of the shock is negligible. That is to say, the term thatmultiplies to ��
in Eq. (35) is negligible, and so Eq. (38) vanishes on the shock. This
ratifies the fact that under certain circumstances, imposing internal
conditions is not necessary.

B. Asymmetric 2-D Configuration

Now we take a step forward with an asymmetric case. As before,
we are looking to redesign an airfoil profile NACA 0012 in transonic

Fig. 4 Iso-Mach lines and CP of a NACA 0012 (Mach 0.8, �� 0:0 deg).

Fig. 5 Symmetric solution: third adjoint variable imposing adjoint Rankine–Hugoniot (R-H) (upper left); third adjoint variable without imposing

adjoint R-H (lower left), and drag sensitivity (right).
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regime but now with an asymmetric flowfield (Mach 0.8,
�� 1:20 deg). In Fig. 6 the iso-Mach lines and CP are shown. In
this case, due to the asymmetry of the configuration, the shock is not
perpendicular to the x axis, so a displacement of the shock produces a
significant variation in the functional.

In Fig. 7 (left) both adjoint solutions (with and without using
Rankine–Hugoniot relations on the shock) are compared for the third
adjoint variable. Also, in Fig. 7 (right) the computed surface gradient
in both cases is shown. In contrast to the symmetric case, in this
configuration the imposition of the adjoint Rankine–Hugoniot
relations has an important influence into the gradient computation.

Figure 8 (left) shows the influence of the shock wave localization
in order to impose adjoint Rankine–Hugoniot relations, and the
recipe is that the adjoint Rankine–Hugoniot relations must be
imposed upwind of the exact shock position. Once the shock wave is
located, the adjoint solution is computed (using adjoint Rankine–
Hugoniot relations), and the drag surface gradient is evaluated. It is
time to integrate the surface drag gradient using 50 Hicks–Henne
sine bump functions centered at various locations along the upper
surfaces of the baseline airfoil, see Fig. 8 (right).

Finally in Fig. 9 an interesting result is shown. In this case, we are
computing the improvement that would provide the correct usage of
the adjoint internal conditions in the functional minimization. The
validation procedure is as follows:

1) Compute the functional gradients (with and without internal
conditions).

2) Normalize the gradient value with respect to the Euclidean
norm.

3) Provide a common advance step for both problems (with and
without internal conditions).

Using the above procedure, if we do not use the internal conditions
drag is reduced to 112 drag counts. On the other hand, if we use the
Rankine–Hugoniot adjoint relations we obtain a drag value of 100
drag counts that approximately supposes an improvement in 10%
which is remarkable. Still better results are obtained for other
functionals that are more sensible to the shock position.

The next step is to state a complete optimization problem to
compare the performance between imposing adjoint boundary
conditions or not. Figure 10 shows a drag minimization problem.

The goal is to reduce the drag of the NACA0012 profile, bymeans
of modifications of the surface S. The angle of attack and Mach
number are fixed so that the flow remains transonic (Mach 0.8,
�� 1:20 deg). As a constraint we impose that the lift coefficient
must be greater than 0.36. In this case, two adjoint problems must be
solved: one for computing the drag coefficient sensitivity and the
other for computing the lift coefficient sensitivity, and in both cases
with and without imposing the adjoint Rankine–Hugoniot
conditions. As we can see in this example, to impose the adjoint

Fig. 6 Iso-Mach lines and CP of a NACA 0012 (Mach 0.8, �� 1:2 deg).

Fig. 7 Asymmetric solution: third adjoint variable imposing adjoint R-H (upper left); third adjoint variable without imposing adjoint R-H (lower left),

and drag sensitivity (right).
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Fig. 8 Shock wave location for imposing adjoint R-H conditions (left) and CD gradient (right).

Fig. 9 Estimate improvement using internal boundary conditions.

Fig. 10 Complete optimization problem.
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internal boundary conditions improves the optimization process in
terms of drag minimization and lift maximization.

It is also remarkable that one iteration less is needed to obtain the
best result if the adjoint internal boundary conditions are imposed.
On the other hand, if the angle of attackwould be a design variable of
our problem we will expect better optimization results; that is
because the obtained lift coefficient is slightly greater than the lower
constraint and reducing the angle of attack could improve the drag
coefficient (satisfying the lift restriction).

V. Conclusions

In this work the continuous adjoint methodology for the
calculation of gradients of functionals of the flow field defined on the
solid surface has been developed taking into account the presence of
discontinuities in the flow variables.

The continuous adjoint methodology derives the adjoint problem
from the continuous formulation of the flow equations, and as such it
constitutes a method that allows one to maintain the rigor throughout
the whole procedure. However, it is often necessary to deal with the
problem of discontinuities in the solutions of the state equation [11].
In this case, shocks must be treated as singularities where the adjoint
Rankine–Hugoniot conditionsmust be enforced. The enforcement of
these conditions is delicate and requires the numerical location of the
shock.

Nevertheless, satisfactory results have been obtained without the
imposition of these Rankine–Hugoniot conditions across the shock
[8,33,34]. On the other hand, in this paper a simplified version of the
adjoint Rankine–-Hugoniot relations is used and a numerical test
revealed the significance of using the functional sensitivity with
respect to shock movements. Moreover, some alternative methods
are proposed to include extra information that is not provided by the
classical finite difference method or the discrete adjoint method,
which do not consider the influence of the shock movement.

Appendix: Variation of the Objective Function
in the Presence of Shocks

The purpose of this Appendix is to obtain the following formula:

�J�S� �
Z
S

�j0�P��S � j�P���S� j�P�@n�S�x�� ds

� �j�U��xb
���xb� � �nS � n���S�xb�

�t� � nS�

which has been used in this paper to compute the variation of the
objective function when we are dealing with a nonregular flow
solution. In fact, the expression above is related to Eq. (5) where, for
the sake of simplicity of the proof, it is assumed that j� j�P�. To
proceed with the proof, the variation of J�S� in the direction �Sn is
defined by

�J�S� � lim
"!0

J�S"� � J�S�
"

(A1)

where S" stands for a small deformation of S, in the normal direction,
with the profile �S,

S" � fx� "�SnS�x�; x 2 Sg

To compute Eq. (A1) we perform an asymptotic expansion of

J�S"� �
Z
S"
j�P"� ds (A2)

The first step is to change variables in Eq. (A2) to rewrite it as an
integral on S:

J�S"� �
Z
S"
j�P"� ds

�
Z
S

j�P"�x� "�SnS�x���Jac�x� "�S�x�nS�x�� ds

�
Z
S

j�P"�x� "�SnS�x����1 � "��S�x� � "@n�S�x�� ds� o�"�

where Jac is the Jacobian of the transformation, and � is the curvature
of S.

Now we write an asymptotic expansion for j�P"�x� "�SnS�x���
with respect to ". If we are far away from the discontinuity�, theflow
variables are assumed to be smooth and a classical asymptotic
expansion holds, namely,

j�P"�x� "�SnS�x��� � j�P"�x��� j0�P"�x��@nP"�x�"�S�x�� o�"�
(A3)

Moreover, if we also assume that there is a smooth dependence of the
flow variables, and, in particular, the pressure P", with respect to ",
we can write

P"�x� � P�x� � "�P� o�"�

Thus, the integrand in Eq. (A3) can be written as

j�P� � "�j0�P��SnS�x� � j�P���S� j�P�@n�S�x�� � o�"�

However, close to the shockwave these asymptotic expansions are
no longer valid and we proceed in the following way. We divide S
into two parts S� C"1 [ C"2, whereC"1 is the subset of S for which the
above asymptotics holds. On C"1 we have

Z
C"
1

j�P"�x� "�SnS�x��� ds�
Z
C"
1

�j�P� � "�j0�P��SnS�x�

� j�P���S� j�P�@n�S�x�� � o�"�� ds

Let us now consider the integral on C"2. Let xb 2 S \�. Note that
C"2 is the neighborhood of xb 2 S constituted by the points x 2 S such
that

P�x� � P�x�b � � o�"� and P"�x� �SnS�x�� � P�x�b � � o�"�

where P�x�b � � limx!xbP�x� with �x � xb� � tS > 0, and P�x�b � �
limx!xbP�x� with �x � xb� � tS < 0. In this case

Z
C"
2

j�P"�x� �SnS�x��� ds�
Z
C"
2

j�P�x�b �� ds� o�"�

whereas

Z
C"
2

j�P�x�� ds� j�P�x�b ��
Z
C"
2

ds� o�"�

To obtain the length ofC"2 we may assume that, at first order, both�
and S are straight lines. In this case, it is not difficult to see that this
length is given by

���xb� � �nS � n���S�xb�
�t� � nS�
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Therefore we finally obtain

1

"

�Z
S"
j�P"� ds �

Z
S

j�P� ds
�

� 1

"

�Z
C"
1

j�P"�x� �SnS�x��� ds�
Z
C"
1

j�P�x�� ds
�

� 1

"

�Z
C"
2

j�P"�x� �SnS�x��� ds�
Z
C"
2

j�P�x�� ds
�

�
Z
S

�j0�P��S � j�P���S� j�P�@n�S�x�� ds

� �j�P��xb
���xb� � �nS � n���S�xb�

�t� � nS�
� o�1�

In the general case, that is, when the integrand in Eq. (2) is a
function j�P;n�, the term Z

Snxb
j0�P��S

must be replaced byZ
Snxb

�
@j

@P
@nP�

@j

@nS
� �n

�

Taking into account that �n� @tg��S�t and integrating by parts we
easily obtain Eq. (5).
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